

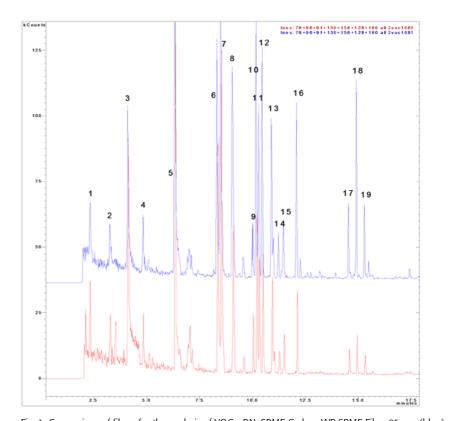
PAL SPME Fibers for PAL COMBI

PAL SPME Fiber

Since its introduction by Pawliszyn et al. (ref. 1) Solid Phase Micro Extraction (SPME) has seen a tremendous development. SPME is a very effective way of automated sample preparation.

It is used for extracting organics from a matrix (solid, liquid or gaseous) into a stationary phase immobilized on a SPME Fiber. The analytes are thermally desorbed directly in the injector of a gas chromatograph. Originally mostly used for extracting solvents with excellent sensitivities from aqueous matrices the range of applications today spans from chemical and environmental to medical applications.

PAL SPME Fibers have been developed and optimized for the most successful SPME sampler, the PAL COMBI. The SPME Fibers are offered with different coatings and film thicknesses. Their excellent extraction properties have been proven for many important applications.


Reference (1)

Detection of substituted benzenes in water at the pg/ml level using solid-phase microextraction and gas chromatography-ion trap mass spectrometry.

Potter DW, Pawliszyn J., J Chromatogr. 1992 Nov 20;625(2):247-55.

Comparison of PAL SPME Fibers with established SPME Fibers

The PAL SPME Fibers (PDMS fibers 7 µm, 30 µm, and 100 µm and the polyacrylate fiber) yield identical results when compared with the corresponding commercial SPME Fibers. For medium and high boiling compounds the PAL SPME Carbon WR Fiber in certain cases shows an even better performance than the established SPME Fibers.

- 1 1.1-Dichloroethene
- 2 cis-1,2-Dichloroethene
- 3 Benzene
- 4 Trichloroethylene
- 5 Toluene
- 6 Ethylbenzene
- 7 m-,p- Xylene
- 8 o-Xylene
- 9 Bromobenzene
- 10 2-Chlorotoluene
- 11 1,3,5-Trimethylbenzene
- 12 4 Chlorotoluene
- 13 tert-Butylbenzene
- 14 1,2,4-Trimethylbenzene
- 15 sec-Butylbenzene
- 16 n-Butylbenzene
- 17 1,2,4-Trichlorobenzene
- 18 Naphthalene
- 19 1,2,3-Trichlorobenzene

Fig. 1: Comparison of fibers for the analysis of VOCs: PAL SPME Carbon WR SPME Fiber 95 µm (blue) and Brand X Carboxen® SPME Fiber (red).

Choose the right Fiber for your Analytes

Typical applications for the SPME technique are:

- Trace analysis in foodstuffs
- Drugs and pharmaceuticals
- Herbicides / pesticides
- Medical diagnostics
- Water analysis (organics in water)
- Trace impurities in polymers and solid samples
- Solvent residues in raw materials

The type of the SPME Fiber corresponds to the polarity and the molecular weight of the analytes:

- For nonpolar samples a PDMS coated SPME Fiber should be chosen.
- For low molecular weights or volatile compounds a 100 μm PDMS-coated SPME Fiber is usually the best choice.

- Larger molecular weights or semi-volatile compounds are more effectively extracted using a 30 μm, or 7 μm PDMScoated SPME Fiber.
- For an effective extraction of analytes with a very high polarity from polar samples, the 85 μm polyacrylate-coated SPME Fiber is the best alternative.
- For trace-level volatiles analysis, use the 95 μm Carbon WR (Carbon Wide Range / PDMS) coated SPME Fiber.

Note: The 100 μ m and 30 μ m PDMS-coated SPME Fibers cannot be used with hexane.

A SPME adapter together with a corresponding holder for the SPME Fibers is available for the PAL and PAL-xt System models dedicated for SPME technique such as Combi PAL or PAL COMBI-xt. The main features of the SPME Option are:

- Easy fiber exchange by hand
- Maximum fiber protection
- Compatible with a variety of different SPME Fibers 10 mm or 20 mm fiber length supported.

3

2

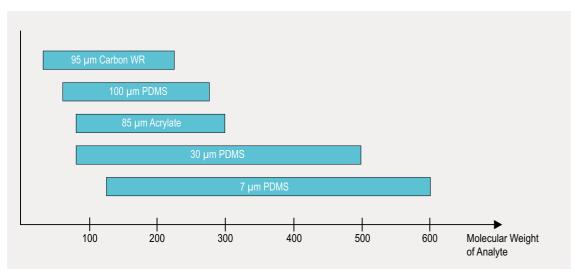
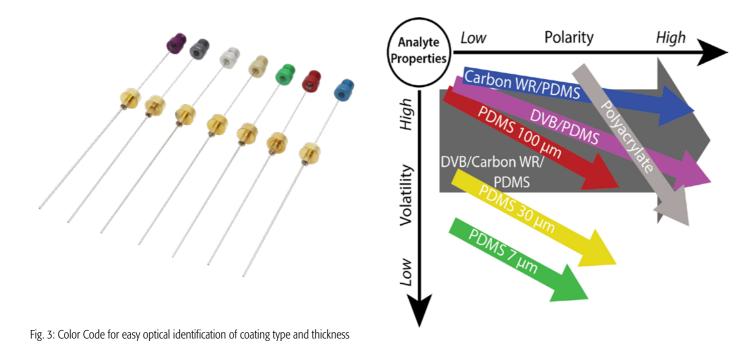



Fig. 2: Correlation between molecular weight of the analyte and the fiber type

Type of Analyte	Molecular Weight	Recommended SPME Fiber	
Non-polar high molecular weight compounds	125 - 600		
Non-polar semi-volatiles	80 - 500		
Polar semi-volatiles	80 - 300	85 μm Polyacrylate (Polyacrylate)	
Volatiles	60 - 275	100 μm PDMS (Polydimethylsiloxane)	
Gases and low molecular weight compounds	30 - 225	95 µm Carbon WR / PDMS (Carbon Wide Range / Polydimethylsiloxane)	

Table 2: Which fiber for which type of analyte?

PAL SPME Fiber Ordering Information

The PAL SPME Fibers are available in order quantities of one, three or five fibers per box. For method development, a set of each fiber type (set of five) is available.

No.	Phase Thickness	Color Code	Set of 1 Fiber PNo.	Set of 3 Fibers PNo.	Set of 5 Fibers PNo.			
	PDMS SPME Fiber (Polydimethylsiloxane)							
1	7 μm	Green	FIB-P-7/10-P1	FIB-P-7/10-P3	FIB-P-7/10-P5			
2	30 μm	Golden	FIB-P-30/10-P1	FIB-P-30/10-P3	FIB-P-30/10-P5			
3	100 μm	Red	FIB-P-100/10-P1	FIB-P-100/10-P3	FIB-P-100/10-P5			
	Polyacrylate SPME Fiber							
4	85 μm	Grey	FIB-A-85/10-P1	FIB-A-85/10-P3	FIB-A-85/10-P5			
	Carbon WR / PDMS SPME Fiber (Carbon Wide Range / Polydimethylsiloxane)							
5	95 μm	Dark Blue	FIB-C-WR-95/10-P1	FIB-C-WR-95/10-P3	FIB-C-WR-95/10-P5			
	DVB / PDMS SPME Fiber (Divinylbenzene / Polydimethylsiloxane)							
5	65 μm	Violet	FIB-DVB-65/10-P1	FIB-DVB-65/10-P3	FIB-DVB-65/10-P5			
	DVB /PDMS/ Carbon WR SPME Fiber (Divinylbenzene / Polydimethylsiloxane / Carbon Wide Range) Dual phase							
7	80 μm (50 μm / 30 μm)	Dark grey	FIB-DVB/C-WR-80/10-P1	FIB-DVB/C-WR-80/10-P3	FIB-DVB/C-WR-80/10-P5			
	Fiber Selection for method development (set of 5 different SPME Fiber types)							
	Fiber Selection of SPME Fib	FIB-SEL5-S1						

Table 1: PAL SPME Fiber Order Information.

All PAL SPME Fibers have a standard length of 10 mm and the core material is Fused Silica.

PAL SPME Fibers can be used for a wide range of GC and injector model.

Find more information about **SPME Fibers**

4

Contact the experts for sample preparation:

Or find your nearest <u>value added reseller</u>.

For more information on the PAL System visit:

www.palsystem.com

